- How cache is different from artifacts
- Good caching practices
- Use multiple caches
- Fallback cache key
- Disable cache for specific jobs
- Inherit global configuration, but override specific settings per job
- Common use cases
- Availability of the cache
- Clearing the cache
Caching in GitLab CI/CD
A cache is one or more files that a job downloads and saves. Subsequent jobs that use the same cache don’t have to download the files again, so they execute more quickly.
To learn how to define the cache in your .gitlab-ci.yml
file,
see the cache
reference.
How cache is different from artifacts
Use cache for dependencies, like packages you download from the internet. Cache is stored where GitLab Runner is installed and uploaded to S3 if distributed cache is enabled.
Use artifacts to pass intermediate build results between stages. Artifacts are generated by a job, stored in GitLab, and can be downloaded.
Both artifacts and caches define their paths relative to the project directory, and can’t link to files outside it.
Cache
- Define cache per job by using the
cache:
keyword. Otherwise it is disabled. - Subsequent pipelines can use the cache.
- Subsequent jobs in the same pipeline can use the cache, if the dependencies are identical.
- Different projects cannot share the cache.
Artifacts
- Define artifacts per job.
- Subsequent jobs in later stages of the same pipeline can use artifacts.
- Different projects cannot share artifacts.
Artifacts expire after 30 days unless you define an expiration time. Use dependencies to control which jobs fetch the artifacts.
Good caching practices
To ensure maximum availability of the cache, do one or more of the following:
- Tag your runners and use the tag on jobs that share the cache.
- Use runners that are only available to a particular project.
-
Use a
key
that fits your workflow. For example, you can configure a different cache for each branch.
For runners to work with caches efficiently, you must do one of the following:
- Use a single runner for all your jobs.
- Use multiple runners that have distributed caching, where the cache is stored in S3 buckets. Shared runners on GitLab.com behave this way. These runners can be in autoscale mode, but they don’t have to be.
- Use multiple runners with the same architecture and have these runners share a common network-mounted directory to store the cache. This directory should use NFS or something similar. These runners must be in autoscale mode.
Use multiple caches
- Introduced in GitLab 13.10.
- Feature Flag removed, in GitLab 13.12.
You can have a maximum of four caches:
test-job:
stage: build
cache:
- key:
files:
- Gemfile.lock
paths:
- vendor/ruby
- key:
files:
- yarn.lock
paths:
- .yarn-cache/
script:
- bundle install --path=vendor
- yarn install --cache-folder .yarn-cache
- echo Run tests...
If multiple caches are combined with a Fallback cache key, the fallback cache is fetched every time a cache is not found.
Fallback cache key
Introduced in GitLab Runner 13.4.
You can use the $CI_COMMIT_REF_SLUG
predefined variable
to specify your cache:key
. For example, if your
$CI_COMMIT_REF_SLUG
is test
you can set a job to download cache that’s tagged with test
.
If a cache with this tag is not found, you can use CACHE_FALLBACK_KEY
to
specify a cache to use when none exists.
In the following example, if the $CI_COMMIT_REF_SLUG
is not found, the job uses the key defined
by the CACHE_FALLBACK_KEY
variable:
variables:
CACHE_FALLBACK_KEY: fallback-key
job1:
script:
- echo
cache:
key: "$CI_COMMIT_REF_SLUG"
paths:
- binaries/
Disable cache for specific jobs
If you have defined the cache globally, it means that each job uses the same definition. You can override this behavior per-job, and if you want to disable it completely, use an empty hash:
job:
cache: {}
Inherit global configuration, but override specific settings per job
You can override cache settings without overwriting the global cache by using
anchors. For example, if you want to override the
policy
for one job:
cache: &global_cache
key: $CI_COMMIT_REF_SLUG
paths:
- node_modules/
- public/
- vendor/
policy: pull-push
job:
cache:
# inherit all global cache settings
<<: *global_cache
# override the policy
policy: pull
For more fine tuning, read also about the
cache: policy
.
Common use cases
The most common use case of caching is to avoid downloading content like dependencies or libraries repeatedly between subsequent runs of jobs. Node.js packages, PHP packages, Ruby gems, Python libraries, and others can all be cached.
For more examples, check out our GitLab CI/CD templates.
Share caches between jobs in the same branch
To have jobs for each branch use the same cache, define a cache with the key: $CI_COMMIT_REF_SLUG
:
cache:
key: $CI_COMMIT_REF_SLUG
This configuration prevents you from accidentally overwriting the cache. However, the first pipeline for a merge request is slow. The next time a commit is pushed to the branch, the cache is re-used and jobs run faster.
To enable per-job and per-branch caching:
cache:
key: "$CI_JOB_NAME-$CI_COMMIT_REF_SLUG"
To enable per-stage and per-branch caching:
cache:
key: "$CI_JOB_STAGE-$CI_COMMIT_REF_SLUG"
Share caches across jobs in different branches
To share a cache across all branches and all jobs, use the same key for everything:
cache:
key: one-key-to-rule-them-all
To share caches between branches, but have a unique cache for each job:
cache:
key: $CI_JOB_NAME
Cache Node.js dependencies
If your project is using npm to install the Node.js
dependencies, the following example defines cache
globally so that all jobs inherit it.
By default, npm stores cache data in the home folder ~/.npm
but you
can’t cache things outside of the project directory.
Instead, we tell npm to use ./.npm
, and cache it per-branch:
#
# https://gitlab.com/gitlab-org/gitlab/-/tree/master/lib/gitlab/ci/templates/Nodejs.gitlab-ci.yml
#
image: node:latest
# Cache modules in between jobs
cache:
key: $CI_COMMIT_REF_SLUG
paths:
- .npm/
before_script:
- npm ci --cache .npm --prefer-offline
test_async:
script:
- node ./specs/start.js ./specs/async.spec.js
Cache PHP dependencies
Assuming your project is using Composer to install
the PHP dependencies, the following example defines cache
globally so that
all jobs inherit it. PHP libraries modules are installed in vendor/
and
are cached per-branch:
#
# https://gitlab.com/gitlab-org/gitlab/-/tree/master/lib/gitlab/ci/templates/PHP.gitlab-ci.yml
#
image: php:7.2
# Cache libraries in between jobs
cache:
key: $CI_COMMIT_REF_SLUG
paths:
- vendor/
before_script:
# Install and run Composer
- curl --show-error --silent "https://getcomposer.org/installer" | php
- php composer.phar install
test:
script:
- vendor/bin/phpunit --configuration phpunit.xml --coverage-text --colors=never
Cache Python dependencies
Assuming your project is using pip to install
the Python dependencies, the following example defines cache
globally so that
all jobs inherit it. Python libraries are installed in a virtual environment under venv/
,
pip’s cache is defined under .cache/pip/
and both are cached per-branch:
#
# https://gitlab.com/gitlab-org/gitlab/-/tree/master/lib/gitlab/ci/templates/Python.gitlab-ci.yml
#
image: python:latest
# Change pip's cache directory to be inside the project directory since we can
# only cache local items.
variables:
PIP_CACHE_DIR: "$CI_PROJECT_DIR/.cache/pip"
# Pip's cache doesn't store the python packages
# https://pip.pypa.io/en/stable/reference/pip_install/#caching
#
# If you want to also cache the installed packages, you have to install
# them in a virtualenv and cache it as well.
cache:
paths:
- .cache/pip
- venv/
before_script:
- python -V # Print out python version for debugging
- pip install virtualenv
- virtualenv venv
- source venv/bin/activate
test:
script:
- python setup.py test
- pip install flake8
- flake8 .
Cache Ruby dependencies
Assuming your project is using Bundler to install the
gem dependencies, the following example defines cache
globally so that all
jobs inherit it. Gems are installed in vendor/ruby/
and are cached per-branch:
#
# https://gitlab.com/gitlab-org/gitlab/-/tree/master/lib/gitlab/ci/templates/Ruby.gitlab-ci.yml
#
image: ruby:2.6
# Cache gems in between builds
cache:
key: $CI_COMMIT_REF_SLUG
paths:
- vendor/ruby
before_script:
- ruby -v # Print out ruby version for debugging
- bundle install -j $(nproc) --path vendor/ruby # Install dependencies into ./vendor/ruby
rspec:
script:
- rspec spec
If you have jobs that each need a different selection of gems, use the prefix
keyword in the global cache
definition. This configuration generates a different
cache for each job.
For example, a testing job might not need the same gems as a job that deploys to production:
cache:
key:
files:
- Gemfile.lock
prefix: $CI_JOB_NAME
paths:
- vendor/ruby
test_job:
stage: test
before_script:
- bundle install --without production --path vendor/ruby
script:
- bundle exec rspec
deploy_job:
stage: production
before_script:
- bundle install --without test --path vendor/ruby
script:
- bundle exec deploy
Cache Go dependencies
Assuming your project is using Go Modules to install
Go dependencies, the following example defines cache
in a go-cache
template, that
any job can extend. Go modules are installed in ${GOPATH}/pkg/mod/
and
are cached for all of the go
projects:
.go-cache:
variables:
GOPATH: $CI_PROJECT_DIR/.go
before_script:
- mkdir -p .go
cache:
paths:
- .go/pkg/mod/
test:
image: golang:1.13
extends: .go-cache
script:
- go test ./... -v -short
Availability of the cache
Caching is an optimization, but it isn’t guaranteed to always work. You need to be prepared to regenerate any cached files in each job that needs them.
After you have defined a cache in .gitlab-ci.yml
,
the availability of the cache depends on:
- The runner’s executor type
- Whether different runners are used to pass the cache between jobs.
Where the caches are stored
The runner is responsible for storing the cache, so it’s essential
to know where it’s stored. All the cache paths defined under a job in
.gitlab-ci.yml
are archived in a single cache.zip
file and stored in the
runner’s configured cache location. By default, they are stored locally in the
machine where the runner is installed and depends on the type of the executor.
GitLab Runner executor | Default path of the cache |
---|---|
Shell | Locally, stored under the gitlab-runner user’s home directory: /home/gitlab-runner/cache/<user>/<project>/<cache-key>/cache.zip .
|
Docker | Locally, stored under Docker volumes: /var/lib/docker/volumes/<volume-id>/_data/<user>/<project>/<cache-key>/cache.zip .
|
Docker machine (autoscale runners) | Behaves the same as the Docker executor. |
If you use cache and artifacts to store the same path in your jobs, the cache might be overwritten because caches are restored before artifacts.
How archiving and extracting works
This example has two jobs that belong to two consecutive stages:
stages:
- build
- test
before_script:
- echo "Hello"
job A:
stage: build
script:
- mkdir vendor/
- echo "build" > vendor/hello.txt
cache:
key: build-cache
paths:
- vendor/
after_script:
- echo "World"
job B:
stage: test
script:
- cat vendor/hello.txt
cache:
key: build-cache
paths:
- vendor/
If you have one machine with one runner installed, and all jobs for your project run on the same host:
- Pipeline starts.
-
job A
runs. -
before_script
is executed. -
script
is executed. -
after_script
is executed. -
cache
runs and thevendor/
directory is zipped intocache.zip
. This file is then saved in the directory based on the runner’s setting and thecache: key
. -
job B
runs. - The cache is extracted (if found).
-
before_script
is executed. -
script
is executed. - Pipeline finishes.
By using a single runner on a single machine, you don’t have the issue where
job B
might execute on a runner different from job A
. This setup guarantees the
cache can be reused between stages. It only works if the execution goes from the build
stage
to the test
stage in the same runner/machine. Otherwise, the cache might not be available.
During the caching process, there’s also a couple of things to consider:
- If some other job, with another cache configuration had saved its cache in the same zip file, it is overwritten. If the S3 based shared cache is used, the file is additionally uploaded to S3 to an object based on the cache key. So, two jobs with different paths, but the same cache key, overwrites their cache.
- When extracting the cache from
cache.zip
, everything in the zip file is extracted in the job’s working directory (usually the repository which is pulled down), and the runner doesn’t mind if the archive ofjob A
overwrites things in the archive ofjob B
.
It works this way because the cache created for one runner often isn’t valid when used by a different one. A different runner may run on a different architecture (for example, when the cache includes binary files). Also, because the different steps might be executed by runners running on different machines, it is a safe default.
Cache mismatch
In the following table, you can see some reasons where you might hit a cache mismatch and a few ideas how to fix it.
Reason of a cache mismatch | How to fix it |
---|---|
You use multiple standalone runners (not in autoscale mode) attached to one project without a shared cache | Use only one runner for your project or use multiple runners with distributed cache enabled |
You use runners in autoscale mode without a distributed cache enabled | Configure the autoscale runner to use a distributed cache |
The machine the runner is installed on is low on disk space or, if you’ve set up distributed cache, the S3 bucket where the cache is stored doesn’t have enough space | Make sure you clear some space to allow new caches to be stored. There’s no automatic way to do this. |
You use the same key for jobs where they cache different paths.
| Use different cache keys to that the cache archive is stored to a different location and doesn’t overwrite wrong caches. |
Let’s explore some examples.
Examples
Let’s assume you have only one runner assigned to your project, so the cache is stored in the runner’s machine by default.
Two jobs could cause caches to be overwritten if they have the same cache key, but they cache a different path:
stages:
- build
- test
job A:
stage: build
script: make build
cache:
key: same-key
paths:
- public/
job B:
stage: test
script: make test
cache:
key: same-key
paths:
- vendor/
-
job A
runs. -
public/
is cached as cache.zip. -
job B
runs. - The previous cache, if any, is unzipped.
-
vendor/
is cached as cache.zip and overwrites the previous one. - The next time
job A
runs it uses the cache ofjob B
which is different and thus isn’t effective.
To fix that, use different keys
for each job.
In another case, let’s assume you have more than one runner assigned to your
project, but the distributed cache is not enabled. The second time the
pipeline is run, we want job A
and job B
to re-use their cache (which in this case
is different):
stages:
- build
- test
job A:
stage: build
script: build
cache:
key: keyA
paths:
- vendor/
job B:
stage: test
script: test
cache:
key: keyB
paths:
- vendor/
Even if the key
is different, the cached files might get “cleaned” before each
stage if the jobs run on different runners in the subsequent pipelines.
Clearing the cache
Runners use cache to speed up the execution of your jobs by reusing existing data. This however, can sometimes lead to an inconsistent behavior.
To start with a fresh copy of the cache, there are two ways to do that.
Clearing the cache by changing cache:key
All you have to do is set a new cache: key
in your .gitlab-ci.yml
. In the
next run of the pipeline, the cache is stored in a different location.
Clearing the cache manually
Introduced in GitLab 10.4.
If you want to avoid editing .gitlab-ci.yml
, you can clear the cache
via the GitLab UI:
- Navigate to your project’s CI/CD > Pipelines page.
-
Click on the Clear runner caches button to clean up the cache.
- On the next push, your CI/CD job uses a new cache.
cache-<index>
, and the index increments by one each time. The old cache is not deleted. You can manually delete these files from the runner storage.